Search results for " kinematic wave equations"

showing 2 items of 2 documents

Analytical solution of kinematic wave time of concentration for overland flow under green-ampt infiltration

2015

In this paper the well-known kinematic wave equation for computing the time of concentration for impervious surfaces has been extended to the case of pervious hillslopes, accounting for infiltration. An analytical solution for the time of concentration for overland flow on a rectangular plane surface is derived using the kinematic wave equation under the Green-Ampt infiltration. The relative time of concentration is defined as the ratio between the time of concentration of an infiltrating plane and the soil sorptivity time scale, depending on the normalized rainfall intensity and a parameter synthesizing the soil and hillslope characteristics. It is shown that for a more complex case (corre…

2300Sorptivity0208 environmental biotechnologyGreen-Ampt infiltration model; Hillslope hydrology; Kinematic wave equations; 2300; Environmental Chemistry; Water Science and Technology; Civil and Structural Engineering02 engineering and technologyMechanicsGreen-Ampt infiltration modelHillslope hydrologyPhysics::Geophysics020801 environmental engineeringKinematic wave equationKinematic waveInfiltration (hydrology)Error analysisImpervious surfaceEnvironmental ChemistrySettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliGeotechnical engineeringSurface runoffTime of concentrationGeologyGeneral Environmental ScienceWater Science and TechnologyCivil and Structural Engineering
researchProduct

AN ANALYTICAL SOLUTION OF KINEMATIC WAVE EQUATIONS FOR OVERLAND FLOW UNDER GREEN-AMPT INFILTRATION

2010

This paper deals with the analytical solution of kinematic wave equations for overland flow occurring in an infiltrating hillslope. The infiltration process is described by the Green-Ampt model. The solution is derived only for the case of an intermediate flow regime between laminar and turbulent ones. A transitional regime can be considered a reliable flow condition when, to the laminar overland flow, is also associated the effect of the additional resistance due to raindrop impact. With reference to the simple case of an impervious hillslope, a comparison was carried out between the present solution and the non-linear storage model. Some applications of the present solution were performed…

Mathematical modelTurbulenceMechanical Engineeringlcsh:SBioengineeringLaminar flowMechanicslcsh:S1-972Industrial and Manufacturing EngineeringKinematic wavePhysics::Fluid Dynamicslcsh:AgricultureInfiltration (hydrology)hydrologic response infiltration analytical solution kinematic wave equationsImpervious surfaceGeotechnical engineeringlcsh:Agriculture (General)Surface runoffGeologyJournal of Agricultural Engineering
researchProduct